• BPnet
  • ビジネス
  • IT
  • テクノロジー
  • 医療
  • 建設・不動産
  • TRENDY
  • WOMAN
  • ショッピング
  • 転職
  • ナショジオ
  • 日経電子版
  • PR

  • PR

  • PR

  • PR

  • PR

人工知能のつくりかた

人工知能にだって向く仕事、向かない仕事がある

五味 弘=沖電気工業 シニアスペシャリスト/エバンジェリスト 2016/09/14 ITpro

 人工知能は万能ではありません。人工知能にも向く仕事と向かない仕事があります。また、どんな人工知能かによっても向き不向きがあります。前回は人工知能の分類を試みました(関連記事:機械学習や深層学習ばかりが人工知能じゃない)。今回は、人工知能をどのように使い分けるかのコツを紹介していきます。

2種類の人工知能をあらためて比較

 まずは、人工知能はどういうものかをおさらいしましょう。前回までに説明したとおり、人工知能は、記号処理的人工知能と、非記号処理的人工知能に分けることができます。

 記号処理的人工知能は、厳密に「記号」を定義してトップダウン的に処理を進めます。これに対して、パターン認識などの非記号処理的人工知能は、厳密な記号を定義せず、多数のパターンを収集・分析し、それをベースにボトムアップ的に処理を進めます。両者の比較をに示します。

表●記号処理的人工知能と非記号処理的人工知能の比較
記号処理的人工知能非記号処理的人工知能
(例:パターン認識)
記号の定義厳密に行う多数の記号のパターンを収集し分析する
処理の方向トップダウンボトムアップ
フレーム問題解決が難しいパターンで学習可能
(例:ニューラルネットワーク)
学習規則(制約)を一意に与える学習で認識の精度を向上

 両者の違いで大きいものに、フレーム問題があります。人工知能が対象とする世界の枠組みをどこにするか、どこにできるかという問題で、人工知能を活用するに当たっては非常に難しい問題です。

 また、学習に対する考えも両者では異なります。記号処理では規則(制約)で世界を律します。一方、非記号処理(パターン認識)では、学習による認識の精度を向上させることを暗黙の前提にしています。

 こうした違いを踏まえ、人工知能をどのように活用していくか、そのコツを考えていきましょう。

ここから先はITpro会員(無料)の登録が必要です。

次ページ ポイントは「規則」が明示できるかどうか
  • 1
  • 2
  • 3
  • 4
  • 5

あなたにお薦め

連載新着

連載目次を見る

今のおすすめ記事

ITpro SPECIALPR

What’s New!

経営

アプリケーション/DB/ミドルウエア

クラウド

設計/開発

サーバー/ストレージ

ネットワーク/通信サービス

セキュリティ

もっと見る